
Thomas Dickerson
Search Heuristics

On Searching an Ordered Rectangular Array

This paper will examine several strategies for searching for values in a sorted rectangular
array of dimensions NxM. The arrays to be searched are sorted according to the following
properties: the arrays must contain no duplicate values, and each element of the array must be
strictly less than its neighbors to the right and below it. It is worth noting that this means that
each element of the array must also be strictly greater than its neighbors to the left and above it.

Of the strategies being considered, both attempt to tighten a box around the search space
until either the boundary of the box collides with the value being search, or the box is of zero
area and the value has not been located. The first such strategy is similar in nature to a simple
linear search on a 1-dimensional array; however, with several optimizations to speed up the
sequential passes necessary to search a 2-dimensional array. The second strategy uses repeated
binary searches along the top and left edges of the search area to reduce the number of
comparisons necessary to tighten the box around the search area.

The first algorithm begins with the edges of the
search area along the edges of the array. It makes a
horizontal pass from left to right along the upper edge. If
this collides with the search value, the algorithm
immediately returns with the coordinates at which it was
found. If the search collides with a value that is greater
than the search value, the right hand boundary of the
search area is moved inwards to exclude that column, and
the pass ends. The top boundary is then moved down a
single row. A pass is then made from top to bottom along
the left-most boundary of the search area following the
same criteria as the horizontal pass, and the left boundary
is moved inwards by a single column. If neither of these
two passes return a value, the process repeats until either
the search value is found or the search area is completely
collapsed. For the sake of comparison, this algorithm was
also rewritten into a version that searches from the lower
right-hand corner to the upper left-hand corner. Note that
in fig. 1, the search checks every cell through which a line
passes, for a total of 22 cells that must be checked.

The second algorithm begins with an identical
configuration of the search area; however, instead of
searching linearly along each edge, it uses a binary
search. This allows it to check significantly fewer cells
with each pass, while still reaching the same conclusion
about the where box boundaries should be. Specifically, it
requires at worst O(log2M + log2N) to make a complete
check along both edges of the search area rather than a
worst case of O(M+N). Note that in fig. 2, the search
checks only those cells in which the line segments have

Figure 1: Searching the area
boundary

Figure 2: Using a binary search
instead

an endpoint and the final highlighted value value of 67 (which is the first value checked in that
iteration of the search), for a total of 11 cells that had to be checked. This is only half the number
of cells that had to be searched, compared to the algorithm which was illustrated in fig. 1, and
due to the logarithmic, rather than linear, nature of the growth of the worst case, these savings
will only grow as the size of the array to be search increases.

To get an idea of the real-world differences in these two strategies, arrays meeting the
properties described above were generated using an algorithm which filled the array by selecting
random cells from a list describing the ragged edge of the currently filled area. Data about the
best, worst, and average number of comparisons for both variations on the first algorithm as well
as the second, was collected using arrays of size 25x400, 40x250, and 100x100 by searching for
every value between (and inclusive of) the minimum and maximum values of each array with
each algorithm.

Linear Box-Search Reverse Linear Box-Search Binary Box-Search

Array Size Worst Best Avg. Worst Best Avg. Worst Best Avg

25x400 10000 1 4369 10000 1 4405 394 1 290

40x250 10000 1 4485 10000 1 4466 618 1 429

50x200 10000 1 4574 10000 1 4537 788 1 508

80x125 10000 1 4751 10000 1 4639 1216 1 627

100x100 10000 1 4832 10000 1 4680 1446 1 630

The best case for all three algorithms, for all three array sizes, unsurprisingly, is 1. When
searching for every possible value in the array, it's only natural that occasionally the first value
checked happens to be the desired value. With both versions of the linear algorithm, the worst
case is 10000 checks. Again, this is unsurprising, as occasionally, when searching in a straight
line, the desired value will be the last value in that line. The worst cases of the binary search are
the most interesting as they are the only set of worst case values that are not directly related to
the area of the array being searched, but seem rather to have some correlation to the relationship
between the side dimensions of the array. The exact nature of this relationship is not
immediately obvious; however, it seems that the closer the array is to being square the worse the
performance of the search. It is worth noting that the average cases of all three algorithms also fit
this observation, though with differing amounts of change in the numbers of comparisons.

The performance differences between the linear and the reversed linear box-searches is
small, however it is worth noting that in almost all cases, the reversed version of the search
returned slightly better average case results. This is most likely an artifact of the way in which
the array is filled, resulting in a higher percentage of all possible values between the min and the
max falling towards the lower right corner, rather than towards the upper left.

The binary box search is far and away the best performing of the three, to the extent that
it's worst worst case performance still only takes a third the number of comparisons as the best of
the average cases for the linear searches.

